
Journal of Sound and Vibration (2003) 259(4), 967–976
doi:10.1006/jsvi.2002.5121, available online at http://www.idealibrary.com on
LETTERSTOTHE EDITOR

MULTIPLE EXTERNAL EXCITATIONS FOR TWO
NON-LINEARLY COUPLED VAN DER POL OSCILLATORS

A. Maccari

Technical Institute ‘‘G. Cardano’’, Piazza della Resistenza 1, 00015 Monterotondo, Rome, Italy.
E-mail: solitone@yahoo.it

(Received 12 February 2002, and in final form 8 March 2002)
1. INTRODUCTION

In recent years, a number of authors have studied the response of non-linear oscillators
subject to N multiple resonant or non-resonant forcing terms. In particular, the Van der
Pol oscillator and many other special cases have been studied extensively for N ¼ 2 [1–5].
For N > 2 the method of multiple time scales has been used to study the van der Pol and
the Duffing oscillators [6], but with no comparison with numerical results.

These particular studies have been extended to a more general class of non-linear
oscillators and compared with numerical results [7]. The most important finding is that if
the forcing frequencies are not close to the primary resonant frequency, the amplitude of
the free oscillation will decay exponentially in time, if the amplitude of the forcing term is
sufficiently large, but will otherwise approach a constant value.

When the forcing frequencies are all close to a particular frequency O; ‘‘quenching’’ is
possible, but in certain cases the amplitude of the free oscillation is modulated with some
frequencies determined by the detuning parameters. When the forcing frequencies are
close to the resonant frequency, then both the amplitude and the phase of the free
oscillation can eventually oscillate with a frequency that is determined by both the forcing
amplitudes and the detuning parameters.

Another paper has considered the multiple resonant or non-resonant parametric
excitations of non-linear oscillators [8] and has demonstrated that the oscillation cannot be
fully quenched, because the only effect of parametric excitation is a shift in the oscillation
frequency.

In this paper, two-degree-of-freedom systems with multiple external excitations are
considered and in particular the transient and steady-state response of two non-linearly
coupled van der Pol oscillators subject to a finite number of harmonic forcing terms are
studied. The relevant system of differential equations is

.XX þ o2
1X � eð1 � X 2 � aY 2Þ ’XX ¼ FðtÞ; ð1Þ

.YY þ o2
2Y � eð1 � bX 2 � Y 2Þ ’YY ¼ 0; ð2Þ

where the dots denote differentiation with respect to the time, o1 and o2 are
incommensurable frequencies, the constants a; b are of order 1, e is a small parameter
and FðtÞ is a finite sum of N harmonic forcing terms of the form

FðtÞ ¼ 2e
XN

i¼1

Ai cosðOitÞ; ð3Þ
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where Ai is the amplitude and Oi is the frequency of the ith component of FðtÞ: In the
following only the case N > 1 (multiple excitations) is considered.

The van der Pol system [9] is a basic model of self-excited oscillation in physics, mechanics,
biology, electronics, chemistry and other disciplines [10–12]. For example, it appears in non-
linear electrical circuits [13], electrical activity in gastrointestinal tracts of humans and
animals [14] and gear systems dynamics [15], where the non-linear coupling terms in
progressive damping are caused by breaking of the oil film between the meshing teeth.

The paper investigates especially the modifications induced by the non-linear terms on
the solution of the linearized version (e ¼ 0) of equations (1)–(2):

XðtÞ ¼ 2r0 cosðo1t � W0Þ þ
XN

i¼1

2Ai

ð1 � O2
i Þ

cosðOitÞ; ð4Þ

YðtÞ ¼ 2w0 cosðo2t � f0Þ; ð5Þ

where r0; W0 and w0;f0 are fixed by the initial conditions. This solution is the sum of the
free oscillation and of the forced oscillation. When the non-linear terms are added, the free
oscillation, i.e., the first term of the r.h.s. of the equations (4)–(5), will persist or decay
(‘‘quenching’’).

The paper is organized as follows. In section 2, when the forcing frequencies are not
close to each other and not close to the primary resonances of the two modes, the response
of the non-linear system (1)–(2) is examined and the formal perturbation solution is carried
out to the lowest order approximation. Both the conditions for the quenching of the free
oscillation and the conditions for its persistence are determined and analytical results are
validated by numerical integration.

In section 3 the forcing frequencies are supposed to be close to each other, but not close
to the primary resonances of the two modes, while in section 4 the forcing frequencies near
the primary resonance of the first mode are considered.

The conclusions are reserved for section 5.

2. FORCING FREQUENCIES NOT CLOSE TO EACH OTHER

The asymptotic perturbation method has been derived from a similar method employed
in non-linear partial differential equations [16] and is based on the detailed computation of
the interaction, induced by the non-linear terms, of the harmonic solutions of the linear
part of the differential equation.

By means of the temporal rescaling

t ¼ eqt; ð6Þ

with q a rational positive number, which will be fixed later on, the asymptotic behavior of
the solution can be investigated: when t ! 1 and e ! 0; the parameter q can be chosen in
such a way that t assumes finite values.

In this section the forcing frequencies Oi are supposed to be not close to each other or
close to the primary resonances of the two modes and the required solution is expressed as
a perturbation expansion, based on the parameter e; which is formally written

XðtÞ ¼
Xþ1

nðoddÞ¼�1
egncnðt; eÞexpð�ino1tÞ þ e

XN

i¼1

Ai

ð1 � O2
i Þ
ðexpðiOitÞ þ c:c:Þ

 !
; ð7Þ

YðtÞ ¼
Xþ1

nðoddÞ¼�1
egnjnðt; eÞexpð�ino2tÞ; ð8Þ
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where c.c. stands for complex conjugate, gn ¼ jnj � 1 and cnðt; eÞ ¼ c	
�nðt; eÞ; because

X ðtÞ; YðtÞ are real (the asterisk denotes complex conjugate). The functions cnðt; eÞ;
jnðt; eÞ depend on the parameter e and it is supposed that their limit for e ! 0 exists and is
finite.

The solution is then a Fourier expansion in which the coefficients vary slowly in time
and evolution equations for the amplitudes of the harmonics terms are derived by
substituting the expression of solutions (7)–(8) into the original equations (1)–(2) and
projecting onto each Fourier mode.

A key feature of the present method is that the advantages of the harmonic balance
method (see equations (7)–(8)) and the multiple scales technique (see equation (6)) are
simultaneously taken into account.

Indicating with cðtÞ; jðtÞ the limits of c1ðt; eÞ; j1ðt; eÞ when e ! 0; the following
equations are obtained for n ¼ 1:

2cte
q þ eð2A � 1 þ 2ajfj2 þ jcj2Þcþ h:o:t: ¼ 0; ð9Þ

2fte
q þ eð2A � 1 þ 2bjcj2 þ jfj2Þfþ h:o:t: ¼ 0; ð10Þ

where

A ¼
XN

i¼1

A2
i

ð1 � O2
i Þ

2
; ð11Þ

and h.o.t. stands for higher order terms. For the proper balance of the various terms, the
choice q ¼ 1 is necessary and, by means of the standard substitutions,

cðtÞ ¼ rðtÞexpðiWðtÞÞ; jðtÞ ¼ wðtÞexpðifðtÞÞ; ð12Þ

the nonlinear equations,

rt ¼
r
2
ð1 � 2A � r2 � 2aw2Þ; wt ¼

w
2
ð1 � 2A � w2 � 2br2Þ; ð13; 14Þ

Wt ¼ ft ¼ 0: ð15Þ

can be easily obtained.
The approximate solution is then

XðtÞ ¼ 2rðetÞcosð�o1t þ W0Þ þ
XN

i¼1

2Ai

ð1 � O2
i Þ

cosðOitÞ; ð16Þ

YðtÞ ¼ 2wðetÞcosð�o2t þ f0Þ; ð17Þ

where W0 and f0 are the initial conditions for the phases W and f:
It is now necessary to establish the steady state solutions of the dynamical system and to

perform the stability analysis. Four different constant solutions are possible:
(1) the trivial solution,

P1 ¼ ðr1; w1Þ ¼ ð0; 0Þ; ð18Þ

(2) a solution with one non-vanishing component,

P2 ¼ ðr2; w2Þ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2A

p
; 0Þ; ð19Þ

corresponding to a ðN þ 1Þ-period quasi-periodic motion for the first mode;
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(3) another solution with one non-vanishing component,

P3 ¼ ðr3; w3Þ ¼ ð0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 2A

p
Þ; ð20Þ

corresponding to a periodic motion for the second mode;
(4) a solution with two excited modes,

P4 ¼ ðr4; w4Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2a � 1Þð1 � 2AÞ

ð4ab � 1Þ

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2b � 1Þð1 � 2AÞ

ð4ab � 1Þ

s !
; ð21Þ

corresponding to a ðN þ 1Þ-period quasi-period motion for the first mode and a periodic
motion for the second mode.

Results of a stability analysis for two typical cases are given in Figures 1 and 2. They
reveal the different types of behavior that occur in the parameter space (here, the ða; bÞ
space).

There are six types of regions, which correspond to different results for the two modes
competition:

(1) a blank region: no steady state solution is stable;
(2) a region filled with boxes: only the solution P3 (20) is stable;
(3) a region filled with crosses: only the solution P2 (19) is stable;
(4) a region filled with circles: only the solution P4 (21) is stable;
(5) a region filled with crosses and boxes: both P2 (19) and P3 (20) are stable, then the

survival of a specific mode depends on initial conditions;
(6) a region filled with circles, boxes and crosses: the trivial solution (18), P2 (19) and P3

(20) are at the same time stable, then the initial conditions determine the survival of
a specific mode or the quenching;
Figure 1. Results of stability analysis in the ða; bÞ parameter space (A ¼ 0�4).



Figure 2. Results of stability analysis in the ða; bÞ parameter space (A ¼ 1�0).
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(7) a region filled with points: only the trivial solution (18) is stable (quenching of the
solution);

(8) a region filled with circles and points: the trivial solution (18) and P4 (21) are at the
same time stable, then the survival of the two modes or the quenching depend on
initial conditions.

All the first six regions are present in Figure 1, while only regions (7) and (8) are present
in Figure 2. In regions (2), (3) and (5) by the end of transients only one mode
will be excited and if the initial conditions are two-mode amplitudes different from zero,
only one mode survives and suppresses the other mode. Numerical integration of
the non-linear equations (1)–(2) confirms the qualitative picture which emerges from the
perturbative analysis. For example, in Figure 3, the associated map, obtained with
the values ðX ð0Þ;Y ð0ÞÞ; ðX ðTÞ;YðTÞÞ; ðX ð2TÞ;Yð2TÞÞ; . . . ; where T ¼ 2p=o1; has
been shown and the numerical solution has been compared with the approximate
solution (16,17). The mean difference between the two solutions is 0�01, i.e., of order e2 as
expected.

3. THE APPROXIMATE SOLUTION WITH THE FREQUENCIES CLOSE TO EACH
OTHER

The results of the previous section can be extended to the case when the forcing
frequencies are close to each other, but not close to the primary frequencies of the two
modes, i.e.,

Oi ¼ Oþ esi; i ¼ 1; . . . ;N; ð22Þ

where O is a fixed frequency not close to one, while si measures the differences of the
frequencies from each other. Substituting equation (23) in equation (3), the external



Figure 3. Comparison between numerical (crosses) and analytical (circles) solutions in the (X ;Y ) plane.
Values of parameters: a ¼ �0�5; b ¼ 0�1; e ¼ 0�08; o1 ¼ 1; o2 ¼

ffiffiffi
2

p
: Forcing frequencies not close to each other

and not close to the primary resonance: O1 ¼
ffiffiffi
3

p
; O2 ¼

ffiffiffi
5

p
; O3 ¼

ffiffiffiffiffiffi
1�7

p
: Amplitudes of the external excitations:

A1 ¼ 0�1; A2 ¼ 0�2; A3 ¼ 0�3:
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excitation FðtÞ becomes

FðtÞ ¼ expðiOtÞ
ð1 � O2Þ

XN

i¼1

eAi expðisitÞ þ c:c:þ Oðe2Þ: ð23Þ

The first mode of the van der Pol system is then subject to an applied force with frequency
O and with an amplitude that is a slowly varying function of time.

The same method as in section 2 is applied and equations (13)–(14) are newly obtained,

rt ¼
r
2
ð1 � 2AðtÞ � r2 � 2aw2Þ; ð24Þ

wt ¼
w
2
ð1 � 2AðtÞ � w2 � 2br2Þ; Wt ¼ ft ¼ 0; ð25; 26Þ

but now with the coefficient A substituted with

AðtÞ ¼ B þ CðtÞ ¼ 1

ð1 � O2Þ
XN

i¼1

A2
i þ

1

ð1 � O2Þ
XN

i;j¼1ði=jÞ
AiAj expðiðsi � sjÞtÞ: ð27Þ

Also in this case the evolution of rðtÞ and wðtÞ does not depend on WðtÞ and fðtÞ; but the
difference is now that the coefficients of the non-linear system (13)–(14) are not constant.

Also in this case the decay of the free oscillation and the quenching of the solution
are possible, but a new behavior can arise, not observable for N ¼ 1: the amplitude of the
free oscillation approaches an oscillatory function of time, which depends on both the
amplitudes Ai as well as the detuning parameters si:

The conditions for the quenching of the solution are the same as those examined in the
previous section (with the coefficient A in the equation (11) substituted with B), when one
or two modes are excited their amplitudes are not constant, but modulated with
frequencies depending on the detuning parameters.
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For example for case (4) the constant solution (21) is substituted with

rS ¼ r4 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i=j

f4ar2
4w

2
4 � 2r2

4½iðsi � sjÞ þ w2
4�gAiAj exp iðsi � sjÞt

ð1 � O2Þf½iðsi � sjÞ þ r2
4�½iðsi � sjÞ þ w2

4� � 4abr2
4w

2
4g

vuut ; ð28Þ

wS ¼ w4 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i=j

f4br2
4w

2
4 � 2w2

4½iðsi � sjÞ þ r2
4�gAiAj exp iðsi � sjÞt

ð1 � O2Þf½iðsi � sjÞ þ r2
4�½iðsi � sjÞ þ w2

4� � 4abr2
4w

2
4g

vuut : ð29Þ

The approximate solution is then

X ðtÞ ¼ 2rðetÞcosð�o1t þ W0Þ þ
1

ð1 � O2Þ
XN

i¼1

2Ai cosðOitÞ; ð30Þ

YðtÞ ¼ 2wðetÞcosð�o2t þ f0Þ; ð31Þ

where W0 and f0 are the initial conditions for the phases W and f:
If the initial conditions are near the point P4 (21) then an approximate analytic solution

can be easily obtained for the asymptotic solution of equations (24)–(25),

rðetÞ ¼ r0 1 � 2

ð1 � O2Þ
XN

i;j¼1ði=j;i>jÞ

AiAj

ðsi � sjÞ
sin½ðsi � sjÞt�

2
4

3
5; ð32Þ

wðetÞ ¼ w0 1 � 2

ð1 � O2Þ
XN

i;j¼1ði=j;i>jÞ

AiAj

ðsi � sjÞ
sin½ðsi � sjÞt�

2
4

3
5: ð33Þ
Figure 4. Comparison between numerical (crosses) and analytical (circles) solutions in the (X ; dX=dT) plane.
Values of parameters: a ¼ �0�5; b ¼ 0�1; e ¼ 0�08; o1 ¼ 1; o2 ¼

ffiffiffi
2

p
: Forcing frequencies close to each other but

not close to the primary resonance: O1 ¼
ffiffiffi
3

p
; O2 ¼

ffiffiffiffiffiffiffiffiffi
3�02

p
; O3 ¼

ffiffiffiffiffiffiffiffiffi
2�99

p
: Amplitudes of the external excitations:

A1 ¼ 0�1; A2 ¼ 0�2; A3 ¼ 0�3:



LETTERS TO THE EDITOR974
The resulting motion is slowly modulated with frequencies depending on the detuning
parameters.

In Figure 4 the associated map obtained with the values (X ð0Þ; ’XX ð0Þ), (XðTÞ; ’XXðTÞ),
(Xð2TÞ; ’XX ð2TÞ),. . ., where T ¼ 2p=o1; has been shown and the numerical solution has
been compared with the approximate solution (30)–(31). The mean difference between the
two solutions is 0�02, i.e., of order e2 as expected.

4. FORCING FREQUENCIES NEAR PRIMARY RESONANCE

The case when the frequency of each component of the forcing term is near the primary
resonant frequency of the first mode is now considered, i.e.,

Oi ¼ 1 þ esi; i ¼ 1; . . . ;N; ð34Þ
where si measures the differences of the frequencies from the natural frequency of the
oscillator. Substituting equation (34) into equation (3), the external excitation FðtÞ
becomes

FðtÞ ¼ e expðitÞ
XN

i¼1

Ai expðisitÞ þ c:c: ð35Þ

The non-linear oscillator is then subject to an applied force with N different frequencies
and amplitudes, which are supposed to be of order e (the primary resonance zone).

The solution can be expressed in the form

XðtÞ ¼
Xþ1

n¼�1
egncnðt; eÞexpð�ino1tÞ ¼ 2r cosðo1t � WÞ þ OðeÞ; ð36Þ

YðtÞ ¼
Xþ1

n¼�1
egnjnðt; eÞexpð�ino2tÞ ¼ 2w cosðo2t � fÞ þ OðeÞ; ð37Þ

with the same conventions as in equations (7)–(8).
Substituting equations (36)–(37) in equations (1)–(2) so as to obtain different equations

for each n and equating coefficients of like powers of e yield

�2io1ct ¼ io1ðjcj2c� cþ 2acjjj2Þ þ
XN

i¼1

Ai expð�isitÞ ¼ 0; ð38Þ

�2io1ct ¼ io1ðjcj2c� cþ 2acjjj2Þ þ
XN

i¼1

Ai expð�isitÞ ¼ 0: ð39Þ

The details of the calculation are not given and only the final results are furnished. By
means of the substitution (12), the equations for the amplitude and the phase of the free
oscillation become

dr
dt

¼ r
2
ð1 � r2 � 2aw2Þ þ 1

2o1

XN

i¼1

Ai sinðsitþ WÞ; ð40Þ

dw
dt

¼ w
2
ð1 � w2 � 2br2Þ; ð41Þ

r
dW
dt

¼ 1

2o1

XN

i¼1

Ai cosðsitþ WÞ; df
dt

¼ 0: ð42Þ



Figure 5. Comparison between numerical (crosses) and analytical (circles) solutions in the (X ; dX=dT) plane.
Values of parameters: a ¼ �0�5; b ¼ 0�1; e ¼ 0�08; o1 ¼ 1; o2 ¼

ffiffiffi
2

p
: Forcing frequencies close to each other and

close to the primary resonance: O1 ¼
ffiffiffiffiffiffiffiffiffi
1�01

p
; O2 ¼

ffiffiffiffiffiffiffiffiffi
0�99

p
; O3 ¼

ffiffiffiffiffiffiffiffiffi
1�03

p
: Amplitudes of the external excitations:

A1 ¼ 0�1; A2 ¼ 0�2; A3 ¼ 0�3:
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The difference with the preceding cases is that now equations (40)–(42) are three coupled
non-linear differential equations, which must be integrated numerically.

Both the amplitude and the phase of the free oscillation can eventually oscillate with a
frequency that is determined by both the forcing amplitudes Ai and the detuning
parameters si:

In Figure 5 the associated map obtained with the values (X ð0Þ; ’XX ð0Þ), (XðTÞ; ’XXðTÞ),
(Xð2TÞ; ’XX ð2TÞ),. . ., where T ¼ 2p=o1; has been shown and the numerical solution has
been compared with the approximate solution. The mean difference between the two
solutions is 0�03, i.e., of order e2 as expected.

5. CONCLUSION

The problem studied in this paper clearly demonstrates the power of the asymptotic
perturbation method, because an important feature of this method is that it provides
quantitative results regarding dynamic behavior, in contrast to much of the current work
in dynamical systems theory, which is concerned with qualitative behavior.

The asymptotic perturbation method has been used to analyze the transient and steady
state response of two non-linearly coupled van der Pol oscillators under a finite number of
harmonic forcing terms. Three cases of different forcing frequencies are investigated and
the corresponding analytical results are compared to numerical simulations. If the forcing
frequencies are not close to each other or close to the resonant frequencies of the two
modes, then the original free oscillation can vanish (‘‘quenching’’) or maintain a finite
value.

When the forcing frequencies are all close to a particular frequency O; ‘‘quenching’’ is
possible, but in certain cases a new behavior arises, because the amplitude of the free
oscillation oscillates with some frequencies determined by the detuning parameters.
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When the forcing frequencies are close to the resonant frequency of the first mode, then
both the amplitude and the phase of the free oscillation can eventually oscillate with a
frequency that is determined by both the forcing amplitudes Ai and the detuning
parameters si:

If the second order approximation solution is needed, the amount and complexity of the
algebraic computations required increase in a very dramatic manner. Consequently, the
use of symbolic manipulation systems is strongly recommended.
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